Respuesta :

I don't know if you need the answer explain to you but here's the answer 2.00

Answer: 2.01

Explanation:

[tex]C_6H_5COOH\rightleftharpoons C_6H_5COO^-+H^+[/tex]

initial : c         0             0

eqm: [tex]c(1-\alpha)[/tex]     [tex]c\alpha[/tex]      [tex]c\alpha[/tex]  

[tex]K_a=\frac{c\alpha\times c\alpha}{c(1-\alpha)}[/tex]

when [tex]\alpha[/tex] is very very small the, the expression will be,

[tex]k_a=\frac{c^2\alpha^2}{c}=c\alpha^2\\\\\alpha=\sqrt{\frac{k_a}{c}}[/tex]

And,

[tex][H^+]=c\alpha[/tex]

Thus the expression will be,

[tex][H^+]=\sqrt{k_a\times c}[/tex]

Now put all the given values in this expression, we get

[tex][H^+]=\sqrt{(6.4\times 10^{-5})\times 1.5}[/tex]

[tex][H^+]=9.7\times 10^{-3}M[/tex]

[tex]pH=-log[H^+][/tex]

[tex]pH=-log[9.7\times 10^{-3}]=2.01[/tex]