Equivalent expressions are expressions with the same value.
The values of the variables are:
[tex]\mathbf{a = 1}[/tex] [tex]\mathbf{b = 9}[/tex] [tex]\mathbf{c = -2}[/tex] [tex]\mathbf{d = 4}[/tex]
The expression is given as:
[tex]\mathbf{\frac{3x^2 + 2x - 21}{-2x^2 -2x + 12} \cdot \frac{2x^2 + 25x + 63}{6x^2 + 7x - 49}}[/tex]
Expand
[tex]\mathbf{\frac{3x^2 + 2x - 21}{-2x^2 -2x + 12} \cdot \frac{2x^2 + 25x + 63}{6x^2 + 7x - 49 } = \frac{3x^2 + 9x - 7x - 21}{-2x^2 +4x -6x + 12} \cdot \frac{2x^2 + 14x + 9x + 63}{6x^2 + 21x - 14x - 49 } }[/tex]
Factorize
[tex]\mathbf{\frac{3x^2 + 2x - 21}{-2x^2 -2x + 12} \cdot \frac{2x^2 + 25x + 63}{6x^2 + 7x - 49 } = \frac{3x(x + 3) - 7(x + 3)}{-2x(x -2) -6(x - 2)} \cdot \frac{2x(x + 7) + 9(x + 7)}{3x(2x + 7) - 7(2x - 7) } }[/tex]
Factor out the terms
[tex]\mathbf{\frac{3x^2 + 2x - 21}{-2x^2 -2x + 12} \cdot \frac{2x^2 + 25x + 63}{6x^2 + 7x - 49 } = \frac{(3x - 7) (x + 3)}{(-2x -6)(x - 2)} \cdot \frac{(2x + 9)(x + 7)}{(3x - 7) (2x - 7) } }[/tex]
Cancel out 3x - 7
[tex]\mathbf{\frac{3x^2 + 2x - 21}{-2x^2 -2x + 12} \cdot \frac{2x^2 + 25x + 63}{6x^2 + 7x - 49 } = \frac{(x + 3)}{(-2x -6)(x - 2)} \cdot \frac{(2x + 9)(x + 7)}{ (2x - 7) } }[/tex]
Factor out -2
[tex]\mathbf{\frac{3x^2 + 2x - 21}{-2x^2 -2x + 12} \cdot \frac{2x^2 + 25x + 63}{6x^2 + 7x - 49 } = \frac{(x + 3)}{-2(x +3)(x - 2)} \cdot \frac{(2x + 9)(x + 7)}{ (2x - 7) } }[/tex]
Cancel out x + 3
[tex]\mathbf{\frac{3x^2 + 2x - 21}{-2x^2 -2x + 12} \cdot \frac{2x^2 + 25x + 63}{6x^2 + 7x - 49 } = \frac{1}{-2(x - 2)} \cdot \frac{(2x + 9)(x + 7)}{ (2x - 7) }}[/tex]
Rewrite as:
[tex]\mathbf{\frac{3x^2 + 2x - 21}{-2x^2 -2x + 12} \cdot \frac{2x^2 + 25x + 63}{6x^2 + 7x - 49 } = \frac{(2x + 9)(x + 7)}{ -2(x - 2)(2x - 7) } }[/tex]
Expand
[tex]\mathbf{\frac{3x^2 + 2x - 21}{-2x^2 -2x + 12} \cdot \frac{2x^2 + 25x + 63}{6x^2 + 7x - 49 } = \frac{2x^2 + 25x + 63}{ -4x^2 + 22x - 28}}[/tex]
Factorize again
[tex]\mathbf{\frac{3x^2 + 2x - 21}{-2x^2 -2x + 12} \cdot \frac{2x^2 + 25x + 63}{6x^2 + 7x - 49 } = \frac{(2x+ 7)(x + 9)}{(2x + 7)(-2x + 4)}}[/tex]
Cancel out common factors
[tex]\mathbf{\frac{3x^2 + 2x - 21}{-2x^2 -2x + 12} \cdot \frac{2x^2 + 25x + 63}{6x^2 + 7x - 49 } = \frac{x + 9}{-2x + 4}}[/tex]
From the question, we have:
[tex]\mathbf{\frac{ax + b}{cx + d}}[/tex]
So, we have:
[tex]\mathbf{\frac{ax + b}{cx + d} = \frac{x + 9}{-2x + 4}}[/tex]
By comparison, we have:
[tex]\mathbf{a = 1}[/tex]
[tex]\mathbf{b = 9}[/tex]
[tex]\mathbf{c = -2}[/tex]
[tex]\mathbf{d = 4}[/tex]
Read more about equivalent expressions at:
https://brainly.com/question/24242989