Respuesta :

Answer:

The measure of angle A is 30 degree, measure of angle B is 90 degree and measure of angle C is 60 degree.

Step-by-step explanation:

The measures of given sides are 6, 12, [tex]6\sqrt{3}[/tex].

According to the Law of Cosine:

[tex]\cos A=\frac{b^2+c^2-a^2}{2bc}[/tex]

Using Law of Cosine, we get

[tex]\cos A=\frac{(12)^2+(6\sqrt{3})^2-(6)^2}{2(12)(6\sqrt{3})}[/tex]

[tex]\cos A=\frac{216}{144\sqrt{3}}[/tex]

[tex]\cos A=\frac{3}{2\sqrt{3}}[/tex]

[tex]\cos A=\frac{\sqrt{3}{2}[/tex]

[tex]A=30^{\circ}[/tex]

Similarly,

[tex]\cos B=\frac{a^2+c^2-b^2}{2ac}[/tex]

[tex]\cos B=\frac{(6)^2+(6\sqrt{3})^2-(12)^2}{2(6)(6\sqrt{3})}[/tex]

[tex]\cos B=\frac{0}{36\sqrt{3}}[/tex]

[tex]\cos B=0[/tex]

[tex]B=90^{\circ}[/tex]

Therefore, measure of angle A is 30 degree and measure of angle B is 90 degree.

According to angle sum property, the sum of interior angles of a triangle is 180 degree.

[tex]A+B+C=180^{\circ}[/tex]

[tex]30^{\circ}+90^{\circ}+C=180^{\circ}[/tex]

[tex]C=60^{\circ}[/tex]

Therefore the measure of angle C is 60 degree.

Ver imagen DelcieRiveria