The region bounded by the given curves is rotated about the specified axis. find the volume v of the resulting solid by any method. y = −x^2 + 10x − 21, y = 0; about the x-axis

Respuesta :

Consider, pls, the suggested option (see the attachment).
Ver imagen evgeniylevi
Ver imagen evgeniylevi

The volume will be 107.23.

Volume

It is a 3-dimension space enclosed by the boundary or occupied by the object.

Given

y = −x² + 10x − 21,

To find

The volume v of the resulting solid by any method.

How to find the volume?

The region is bounded by y = −x² + 10x − 21 and y = 0.

for the limit  y = −x² + 10x − 21, in this y becomes 0. then

−x² + 10x − 21 = 0

( x - 3 ) ( x - 7) = 0

So limit will be 3 to 7.

Then the volume will be.

[tex]\rm Volume = \pi \int\limits^7_3 {y^{2} } \, dx \\\rm Volume = \pi \int\limits^7_3 { (-x^{2} +10x-21)^{2} } \, dx \\\rm Volume = \pi \int\limits^7_3 {(x^{4} -20x^{3}+121x^{2} -420x+441) } \, dx \\\rm Volume = \pi [ \dfrac{x^{5} }{5} - 5x^{4}+ \dfrac{121}{3}x^{3} - 210x^{2} +441x]_3^7[/tex]

[tex]\rm Volume = \pi [ \dfrac{(7^{5}-3^{5}) }{5} - 5(7^{4}-3^{4}) + \dfrac{121}{3}(7^{3} - 3^{3} ) - 210(7^{2}-3^{2} ) +441(7-3)]\\\\\rm Volume = \pi [ 3312.8 -11600 +12745.33-8400+1764] \\\\\rm Volume = 107.23[/tex]

Thus the volume will be 107.23.

More about the volume link is given below.

https://brainly.com/question/1578538