Respuesta :
We need to write down momentum and energy conservation laws, this will give us a system of equation that we can solve to get our final answer. On the right-hand side, I will write term after the collision and on the left-hand side, I will write terms before the collision.
Let's start with energy conservation law:
[tex]\frac{mv^2}{2}+\frac{2mv^2}{2}+0.75E=\frac{mv_{A}^2}{2}+\frac{2mv_{B}^2}{2}[/tex]
[tex]\frac{3mv^2}{2}+0.75E=\frac{mv_{A}^2}{2}+mv_{B}^2[/tex]
This equation tells us that kinetic energy of two carts before the collision and 3 quarters of explosion energy is beign transfered to kinetic energy of the cart after the collision.
Let's write down momentum conservation law:
[tex]mv+2mv=mv_A+2mv_B\\ 3mv=mv_A+2mv_B\\ [/tex]
Because both carts have the same mass we can cancel those out:
[tex]3v=v_A+2v_B[/tex]
Now we have our system of equation that we have to solve:
[tex]\frac{3mv^2}{2}+0.75E=\frac{mv_{A}^2}{2}+mv_{B}^2\\ 3v=v_A+2v_B[/tex]
Part A
We need to solve our system for [tex] v_a[/tex]. We will solve second equation for [tex]v_b[/tex] and then plug that in the first equation.
[tex]3v=v_A+2v_B\\ 3v-v_A=2v_B\\ v_B=\frac{3v-v_A}{2}[/tex]
Now we have to plug this in the first equation:
[tex]\frac{3mv^2}{2}+0.75E=\frac{mv_{A}^2}{2}+mv_{B}^2\\v_B=\frac{3v-v_A}{2}\\ [/tex]
We will multiply the first equation with 2 and divide by m:
[tex]3v^2+\frac{3E}{2m}=v_{A}^2}+2v_{B}^2\\v_B=\frac{3v-v_A}{2}\\ [/tex]
Now we plug in the second equation into first one:
[tex]3v^2+\frac{3E}{2m}=v_{A}^2}+2v_{B}^2\\ 3v^2+\frac{3E}{2m}=v_{A}^2}+2\frac{(3v-v_A)^2}{4}\\ 3v^2+\frac{3E}{2m}=v_{A}^2}+\frac{9v^2-6v\cdot v_A+v_{A}^2}{2} /\cdot 2\\ 6v^2+\frac{3E}{m}=2v_{A}^2+9v^2-6v\cdot v_A+v_{A}^2}\\ 3v_A^2-6v\cdot v_a+3(v^2-\frac{E}{m})=0/\cdot\frac{1}{3}\\ v_A^2-3v\cdot v_A+ (v^2-\frac{E}{m})=0 [/tex]
We end up with quadratic equation that we have to solve, I won't solve it by hand.
Coefficients are:
[tex]a=1\\ b=-6v\\ c=v^2-\frac{E}{m}[/tex]
Solutions are:
[tex]v_A=\frac{3v+\sqrt{5v^2+\frac{4E}{m}}}{2},\:v_A=\frac{3v-\sqrt{5v^2+\frac{4E}{m}}}{2}[/tex]
Part B
We do the same thing here, but we must express [tex] v_a[/tex] from momentum equation:
[tex]3v=v_A+2v_B\\ v_A=3v-2v_B[/tex]
Now we plug this into our energy conservation equation:
[tex]3v^2+\frac{3E}{2m}=v_{A}^2}+2v_{B}^2\\v_A={3v-v_B}\\ 3v^2+\frac{3E}{2m}=(3v-v_B)^2+2v_B^2\\ 3v^2+\frac{3E}{2m}=9v^2-6v\cdot v_B+v_B^2+2v_B^2\\ 3v^2+\frac{3E}{2m}=3v_B^2-6v\cdot v_B+9v^2\\ 3v_B^2-6v\cdot v_B+9v^2-3v^2-\frac{3E}{2m}=0\\ 3v_B^2-6v\cdot v_B+(6v^2-\frac{3E}{2m})=0 [/tex]
Again we end up with quadratic equation. Coefficients are:
[tex]a=3\\ b=-6v\\ c=6v^2-\frac{3E}{2m}[/tex]
Solutions are:
[tex]v_B=\frac{6v+\sqrt{-36v^2+\frac{18E}{m}}}{6},\:v_B=\frac{6v-\sqrt{-36v^2+\frac{18E}{m}}}{6}[/tex]
Let's start with energy conservation law:
[tex]\frac{mv^2}{2}+\frac{2mv^2}{2}+0.75E=\frac{mv_{A}^2}{2}+\frac{2mv_{B}^2}{2}[/tex]
[tex]\frac{3mv^2}{2}+0.75E=\frac{mv_{A}^2}{2}+mv_{B}^2[/tex]
This equation tells us that kinetic energy of two carts before the collision and 3 quarters of explosion energy is beign transfered to kinetic energy of the cart after the collision.
Let's write down momentum conservation law:
[tex]mv+2mv=mv_A+2mv_B\\ 3mv=mv_A+2mv_B\\ [/tex]
Because both carts have the same mass we can cancel those out:
[tex]3v=v_A+2v_B[/tex]
Now we have our system of equation that we have to solve:
[tex]\frac{3mv^2}{2}+0.75E=\frac{mv_{A}^2}{2}+mv_{B}^2\\ 3v=v_A+2v_B[/tex]
Part A
We need to solve our system for [tex] v_a[/tex]. We will solve second equation for [tex]v_b[/tex] and then plug that in the first equation.
[tex]3v=v_A+2v_B\\ 3v-v_A=2v_B\\ v_B=\frac{3v-v_A}{2}[/tex]
Now we have to plug this in the first equation:
[tex]\frac{3mv^2}{2}+0.75E=\frac{mv_{A}^2}{2}+mv_{B}^2\\v_B=\frac{3v-v_A}{2}\\ [/tex]
We will multiply the first equation with 2 and divide by m:
[tex]3v^2+\frac{3E}{2m}=v_{A}^2}+2v_{B}^2\\v_B=\frac{3v-v_A}{2}\\ [/tex]
Now we plug in the second equation into first one:
[tex]3v^2+\frac{3E}{2m}=v_{A}^2}+2v_{B}^2\\ 3v^2+\frac{3E}{2m}=v_{A}^2}+2\frac{(3v-v_A)^2}{4}\\ 3v^2+\frac{3E}{2m}=v_{A}^2}+\frac{9v^2-6v\cdot v_A+v_{A}^2}{2} /\cdot 2\\ 6v^2+\frac{3E}{m}=2v_{A}^2+9v^2-6v\cdot v_A+v_{A}^2}\\ 3v_A^2-6v\cdot v_a+3(v^2-\frac{E}{m})=0/\cdot\frac{1}{3}\\ v_A^2-3v\cdot v_A+ (v^2-\frac{E}{m})=0 [/tex]
We end up with quadratic equation that we have to solve, I won't solve it by hand.
Coefficients are:
[tex]a=1\\ b=-6v\\ c=v^2-\frac{E}{m}[/tex]
Solutions are:
[tex]v_A=\frac{3v+\sqrt{5v^2+\frac{4E}{m}}}{2},\:v_A=\frac{3v-\sqrt{5v^2+\frac{4E}{m}}}{2}[/tex]
Part B
We do the same thing here, but we must express [tex] v_a[/tex] from momentum equation:
[tex]3v=v_A+2v_B\\ v_A=3v-2v_B[/tex]
Now we plug this into our energy conservation equation:
[tex]3v^2+\frac{3E}{2m}=v_{A}^2}+2v_{B}^2\\v_A={3v-v_B}\\ 3v^2+\frac{3E}{2m}=(3v-v_B)^2+2v_B^2\\ 3v^2+\frac{3E}{2m}=9v^2-6v\cdot v_B+v_B^2+2v_B^2\\ 3v^2+\frac{3E}{2m}=3v_B^2-6v\cdot v_B+9v^2\\ 3v_B^2-6v\cdot v_B+9v^2-3v^2-\frac{3E}{2m}=0\\ 3v_B^2-6v\cdot v_B+(6v^2-\frac{3E}{2m})=0 [/tex]
Again we end up with quadratic equation. Coefficients are:
[tex]a=3\\ b=-6v\\ c=6v^2-\frac{3E}{2m}[/tex]
Solutions are:
[tex]v_B=\frac{6v+\sqrt{-36v^2+\frac{18E}{m}}}{6},\:v_B=\frac{6v-\sqrt{-36v^2+\frac{18E}{m}}}{6}[/tex]