Respuesta :
[tex]x^4 - (x^2-1)(x^2+1)[/tex]
Use the formula: (a+b)(a-b) = a^2 - b^2
[tex]x^4 - [(x^2)^2 - 1^2]\\\\x^4 - (x^4-1)\\\\x^4 - x^4 + 1\\\\\boxed{\bf{1}}[/tex]
No matter what the value of 'x' is, the final answer will always be 1.
Use the formula: (a+b)(a-b) = a^2 - b^2
[tex]x^4 - [(x^2)^2 - 1^2]\\\\x^4 - (x^4-1)\\\\x^4 - x^4 + 1\\\\\boxed{\bf{1}}[/tex]
No matter what the value of 'x' is, the final answer will always be 1.
[tex]x^4 - (x^2-1)(x^2+1) = x^4 - (x^4-1) =x^4 - x^4 + 1= \boxed{1}[/tex]
The expression does not depend on the variable x as your final answer will always be 1.
The expression does not depend on the variable x as your final answer will always be 1.