Respuesta :

The coordinates would be (-3.2, 6.2).

We start out finding the slope of the line segment.  Slope is rise/run:

(20-5)/(6--4) = 15/10 = 3/2

The ratio 2:3 splits the segment into 5 sections.  We will add 2/5 of the rise to the y-coordinate and 2/5 of the run to the x-coordinate:

-4+(2/5)(2)= -4+4/5 = -4+0.8= -3.2
5+(2/5)(3) = 5+6/5 = 5+1.2 = 6.2

The coordinates of P would be (-3.2, 6.2).

Answer:

The coordinates of P are (0,11).

Step-by-step explanation:

Since, when a point divides a line segment in the ratio of m : n that having endpoints [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] and lies between these points.

Then, the coordinates of the point are,

[tex](\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n})[/tex]

Hence, the coordinates of point P that divides the Line segment RW has endpoints R(-4,5) and W(6,20) in 2:3 ratio are,

[tex](\frac{2(6)+3(-4)}{2+3},\frac{2(20)+3(5)}{2+3})[/tex]

[tex]=(\frac{12-12}{5},\frac{40+15}{5})[/tex]

[tex]=(0,\frac{55}{5})[/tex]

[tex]=(0,11)[/tex]

Otras preguntas