Respuesta :
The probability is 0.1144.
Using binomial probability, we have:
[tex]_nC_r\times(p)^r\times(1-p)^{n-r} \\ \\_{20}C_8\times (0.3)^8 \times(1-0.3)^{20-8} \\ \\ \frac{20!}{8!12!}\times (0.3)^8 \times (0.7)^{12} \\ \\=0.1144[/tex]
Using binomial probability, we have:
[tex]_nC_r\times(p)^r\times(1-p)^{n-r} \\ \\_{20}C_8\times (0.3)^8 \times(1-0.3)^{20-8} \\ \\ \frac{20!}{8!12!}\times (0.3)^8 \times (0.7)^{12} \\ \\=0.1144[/tex]
Answer: 0.1144
Step-by-step explanation:
Binomial probability formula :-
[tex]P(X)=^nC_xp^x(1-p)^{n-x}[/tex], P(X) is the probability of getting success in x trials , n is total n umber of trials and p is the probbaility of getting success in each trial.
Given : The proportion of high school graduates go to college : p=0.30
Sample size : n= 20
The probability that exactly 8 will go to college is given by :-
[tex]P(8)=^{20}C_{8}(0.30)^8(0.70)^{12}\\\\=\dfrac{20!}{8!(12)!}(0.3)^8(0.7)^{12}=0.114396739705\approx0.1144[/tex]
Hence, the probability that exactly 8 will go to college = 0.1144