ANSWER
The correct answer is option A.
EXPLANATION
We want to simplify the expression,
[tex] \frac{ \frac{ - 2}{x} + \frac{5}{y} }{ \frac{3}{y} - \frac{2}{x} } [/tex]
We collect LCM to obtain,
[tex] \frac{ \frac{ - 2y + 5x}{xy} }{ \frac{3x - 2y}{xy} } [/tex]
We change the middle bar in to normal division sign to obtain,
[tex] \frac{ - 2y + 5x}{xy} \div \frac{3x - 2y}{xy} [/tex]
We now multiply the first fraction by the reciprocal of the second fraction to obtain,.
[tex] \frac{ - 2y + 5x}{xy} \times \frac{xy}{3x - 2y} [/tex]
We cancel out common factors to obtain,
[tex] \frac{ - 2y + 5x}{3x - 2y} [/tex]