Respuesta :

Answer:

Given the equations:

[tex]x^2+y^2 =36[/tex]              .....[1]

[tex]x =2y +6[/tex]                     ....[2]

Substitute the value of x in [1] we get;'

[tex](2y+6)^2+y^2 =36[/tex]

Use identity: [tex](a+b)^2= a^2+2ab+b^2[/tex]

[tex]4y^2+36+24y + y^2 =36[/tex]

Combine like terms;

[tex]5y^2+36+24y=36[/tex]

Subtract 36 from both sides we get;

[tex]5y^2+24y=0[/tex]

[tex]y (5y+24) = 0[/tex]

By zero product property, we get;

y = 0 and [tex]y =- \frac{24}{5} = -4.8[/tex]

Substitute these y values in [2] to get x values;

For y = 0 we have;

x = 2(0) +6 = 0+6 = 6

For x = -4.8

x = 2(-4.8)+6 = -9.6 + 6 = -3.6

Therefore, the solution for the given equations are; (6, 0) and (-3.6, -4.8)


Ver imagen OrethaWilkison