Respuesta :
suppose one of the roots is a the second is 2a. The factors will be:
(x-a) and (x-2a)
thus
(x-a)(x-2a)=x^2+6x+q
x^2-xa-2ax+2a^2=x^2+6x+q
taking corresponding terms we shall have:
-2ax=6x
solving for a we get
-2a=6
thus
a=-3
but
q=2a^2
substituting the value of a we get:
q=2(-3)^2
q=2*9
q=18
(x-a) and (x-2a)
thus
(x-a)(x-2a)=x^2+6x+q
x^2-xa-2ax+2a^2=x^2+6x+q
taking corresponding terms we shall have:
-2ax=6x
solving for a we get
-2a=6
thus
a=-3
but
q=2a^2
substituting the value of a we get:
q=2(-3)^2
q=2*9
q=18
Answer:
q = 18 , roots = -3&-6
Step-by-step explanation:
Let :-
- First root = x
- Second root = 2x
We know ,
- Sum of roots = -b/a
- x + 2x = -6/1
- 3x = -6
- x = -3
And ,
- Product of roots = c/a
- x * 2x = q
- 2x²= q
- q = 2* -3²
- q = 2* 9
- q = 18
Roots :-
- x = -3
- 2x = -6