Respuesta :
The problem has two solutions
1. If 9 and 12 are legs, then the hypotenuse (x) is:
x = √(9²+12²) = √(81+144) = √225 = 15
2. If 9 is the leg, and 12 is the hypotenuse, then the other leg (x) is:
x = √(12²-9²) = √(144-81) = √63 ≈ 7.94
1. If 9 and 12 are legs, then the hypotenuse (x) is:
x = √(9²+12²) = √(81+144) = √225 = 15
2. If 9 is the leg, and 12 is the hypotenuse, then the other leg (x) is:
x = √(12²-9²) = √(144-81) = √63 ≈ 7.94
a^2 + b^2 = c^2 for right triangle
2 possible cases: a=9, b=12
c^2 = 9^2 + 12^2 = 81 + 144 = 225
c = 15
or a=9, c=12
b^2 = 12^2 - 9^2 = 144 - 81 = 63
b = 7.94
2 possible cases: a=9, b=12
c^2 = 9^2 + 12^2 = 81 + 144 = 225
c = 15
or a=9, c=12
b^2 = 12^2 - 9^2 = 144 - 81 = 63
b = 7.94