Choose the single logarithmic expression that is equivalent to the one shown. log2 6 + log2 2 − log2 8

Options are:

a) log2 (2/3)
b) log2 1
c) log2 (3/2)
d) log2 4

Respuesta :

To simplify the logarithm function we shall have:
log2 6+ log2 2 -log2 8
but from the laws of logarithm we can simplify the above to
log2 [(6×2)/8]
log2 3/2
Answer: C] log2 (3/2)

Answer:

Option c is correct

[tex]\log_2 (\frac{3}{2})[/tex]

Step-by-step explanation:

Using the logarithmic rules:

[tex]\log_b (mn) = \log_b m+ \log_b n[/tex]

[tex]\log_b \frac{m}{n} = \frac{\log_b m}{\log_b n}[/tex]

Given the expression:

[tex]\log_2 6 + \log_2 2 - \log_2 8[/tex]

Apply the logarithmic rules:

[tex]\log_2 (6 \cdot 2)-\log_2 8[/tex]

Simplify:

[tex]\log_2 12 -\log_2 8[/tex]

Apply the logarithmic rules we have;

[tex]\log_2 \frac{12}{8} = \log_2 (\frac{3}{2})[/tex]

Therefore, the single logarithmic expression that is equivalent to the one shown [tex]\log_2 6 + \log_2 2 - \log_2 8[/tex] is, [tex]\log_2 (\frac{3}{2})[/tex]