Respuesta :
1) PV=nRT
P=738.0 mmHg
V=15.5mL=0.0155 L
T=273+25=298 K
R=62.36 L*mmHg*K⁻¹mol⁻¹
n=PV/RT
n=(738.0 mmHg *0.0155 L)/(62.36 L*mmHg*K⁻¹mol⁻¹*298 K)= =0.000616=6.16*10⁻⁴ mol
2) From the equation of the reaction
1 mol CaCO3 gives 1 mol CO2,
so 6.16*10⁻⁴ mol CaCO3 ----> 6.16*10⁻⁴ mol CO2
Molar mass CaCO3 =M(Ca)+M(C)+3*M(O)= 40.1+12.0+3*16.0 =100.1 g/mol
6.16*10⁻⁴ mol CaCO3 * 100.1 g/mol =617*10⁻⁴ g =0.0617 g = 61.7mg
P=738.0 mmHg
V=15.5mL=0.0155 L
T=273+25=298 K
R=62.36 L*mmHg*K⁻¹mol⁻¹
n=PV/RT
n=(738.0 mmHg *0.0155 L)/(62.36 L*mmHg*K⁻¹mol⁻¹*298 K)= =0.000616=6.16*10⁻⁴ mol
2) From the equation of the reaction
1 mol CaCO3 gives 1 mol CO2,
so 6.16*10⁻⁴ mol CaCO3 ----> 6.16*10⁻⁴ mol CO2
Molar mass CaCO3 =M(Ca)+M(C)+3*M(O)= 40.1+12.0+3*16.0 =100.1 g/mol
6.16*10⁻⁴ mol CaCO3 * 100.1 g/mol =617*10⁻⁴ g =0.0617 g = 61.7mg
Answer: The number of moles of carbon dioxide produced are [tex]6.16\times 10^{-4}mol[/tex] and the mass of calcium carbonate is 61.6 mg
Explanation:
To calculate the moles of carbon dioxide gas, we use the equation given by ideal gas which follows:
[tex]PV=nRT[/tex]
where,
P = pressure of the gas = 738.0 mmHg
V = Volume of the gas = 15.5 mL = 0.0155 L (Conversion factor: 1 L = 1000 mL)
T = Temperature of the gas = [tex]25^oC=[25+273]K=298K[/tex]
R = Gas constant = [tex]62.3637\text{ L.mmHg }mol^{-1}K^{-1}[/tex]
n = number of moles of carbon dioxide gas = ?
Putting values in above equation, we get:
[tex]738.0mmHg\times 0.0155L=n\times 62.3637\text{ L.mmHg }mol^{-1}K^{-1}\times 298K\\\\n=\frac{738\times 0.0155}{62.3637\times 298}=6.16\times 10^{-4}mol[/tex]
For the given chemical equation:
[tex]CaCO_3(s)+2H^+(aq.)\rightarrow Ca^{2+}(aq.)+CO_2(g)+H_2O(l)[/tex]
By Stoichiometry of the reaction:
1 mole of carbon dioxide gas is produced from 1 mole of calcium carbonate
So, [tex]6.16\times 10^{-4}mol[/tex] of carbon dioxide will be produced from = [tex]\frac{1}{1}\times 6.16\times 10^{-4}=6.16\times 10^{-4}mol[/tex] of calcium carbonate
- To calculate the mass for given number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]
Molar mass of calcium carbonate = 100 g/mol
Moles of calcium carbonate = [tex]6.16\times 10^{-4}mol[/tex]
Putting values in above equation:
[tex]6.16\times 10^{-4}mol=\frac{\text{Mass of calcium carbonate}}{100g/mol}\\\\\text{Mass of calcium carbonate}=(6.16\times 10^{-4}mol\times 100g/mol)=6.16\times 10^{-2}g[/tex]
Converting this into milligrams, we use the conversion factor:
1 g = 1000 mg
So, [tex]6.16\times 10^{-2}g\times \frac{1000mg}{1g}=61.6mg[/tex]
Hence, the number of moles of carbon dioxide produced are [tex]6.16\times 10^{-4}mol[/tex] and the mass of calcium carbonate is 61.6 mg