Respuesta :
The perimeter is 41.7
Find the length of each side using the distance formula:
[tex]d=\sqrt{(0-0)^2+(-5-9)^2}=\sqrt{0^2+14^2}=\sqrt{196}=14 \\ \\d=\sqrt{(6-0)^2+(-10--5)^2}=\sqrt{6^2+(-5)^2}=\sqrt{36+25}=\sqrt{61}=7.8 \\ \\d=\sqrt{(6-0)^2+(-10-9)^2}=\sqrt{6^2+(-19)^2}=\sqrt{36+361}=\sqrt{397}= \\19.9[/tex]
Adding the side lengths, we have
14+7.8+19.9=41.7
Find the length of each side using the distance formula:
[tex]d=\sqrt{(0-0)^2+(-5-9)^2}=\sqrt{0^2+14^2}=\sqrt{196}=14 \\ \\d=\sqrt{(6-0)^2+(-10--5)^2}=\sqrt{6^2+(-5)^2}=\sqrt{36+25}=\sqrt{61}=7.8 \\ \\d=\sqrt{(6-0)^2+(-10-9)^2}=\sqrt{6^2+(-19)^2}=\sqrt{36+361}=\sqrt{397}= \\19.9[/tex]
Adding the side lengths, we have
14+7.8+19.9=41.7