Respuesta :

The graph of f(x)=4 cos(1/2x)-3 differs from the graph of g(x)=4 cos(x)-3, f(x) is stretched horizontally. 

Answer:

The function f(x) is stretched horizontally.

Step-by-step explanation:

We are asked to determine how the graph of [tex]f(x)=4\text{cos}(\frac{1}{2}x)-3[/tex] differ from the graph of [tex]g(x)=4\text{cos}(x)-3[/tex].

Let us recall transformation rules of functions.

[tex]f(ax)\rightarrow[/tex]

If [tex]a>1[/tex] function compresses horizontally.

If [tex]a<1[/tex] function stretches horizontally.

Upon looking at function [tex]f(x)=4\text{cos}(\frac{1}{2}x)-3[/tex], we can see that the value of 'a' is less than 1 that is [tex]\frac{1}{2}<1[/tex], therefore, the function f(x) is stretched horizontally.