Respuesta :
y + 1 = -14(x - 2)^2
y = -14(x - 2)^2 - 1
The vertex is the point (h, k) when the parabola is in the turning point form: y = a(x - h)^2 + k, therefor the vertex is at (2, -1)
y = -14(x - 2)^2 - 1
The vertex is the point (h, k) when the parabola is in the turning point form: y = a(x - h)^2 + k, therefor the vertex is at (2, -1)
Answer:
Vertex ( h,k) : ( 2 ,-1) .
Step-by-step explanation:
Given : y+1=−14(x−2)².
To find : What is the vertex of the parabola?
Solution : We have given that y+1=−14(x−2)².
Vertex form of parabola: y=a(x−h)²+k.
Where , ( h ,k ) are vertex
we have y+1=−14(x−2)²
On subtracting by both sides
y = −14(x−2)² - 1
On comparing with Vertex form of parabola
a = - 14 ; h = 2 ; k = -1.
Therefore, Vertex ( h,k) : ( 2 ,-1) .