Respuesta :

Answer: The product of the above polynomials will be

[tex]\frac{4y}{y+3}[/tex]

Step-by-step explanation:

Since we have given that

[tex]\frac{2y}{y-3}\times \frac{4y-12}{2y+6}[/tex]

We need to solve the product of two polynomials :

[tex]\frac{2y}{y-3}\times \frac{4y-12}{2y+6}\\\\=\frac{2y}{y-3}\times \frac{4(y-3)}{2(y+3)}\\\\=\frac{4y}{y+3}[/tex]

Hence, the product of the above polynomials will be

[tex]\frac{4y}{y+3}[/tex]

Answer:

The value of given expression is [tex]\frac{4y}{y+3}[/tex].

Step-by-step explanation:

The given expression is

[tex]\frac{2y}{y-3}\times \frac{4y-12}{2y+6}[/tex]

[tex]\frac{2y}{y-3}\times \frac{4y-12}{2y+6}=\frac{2y\times (4y-12)}{(y-3)\times (2y+6)}[/tex]

[tex]\frac{2y}{y-3}\times \frac{4y-12}{2y+6}=\frac{2y\times 4\times (y-3))}{(y-3)\times 2\times (y+6)}[/tex]

Cancel out the common factor (y-3) and 2.

[tex]\frac{2y}{y-3}\times \frac{4y-12}{2y+6}=\frac{4y}{y+3}[/tex]

Therefore the value of given expression is [tex]\frac{4y}{y+3}[/tex].