Respuesta :
Answer:
[tex]\text{cos}(x)\approx 0.4495[/tex]
Step-by-step explanation:
We have been given that [tex]\text{tan}(x)=1.98[/tex] and [tex]\text{sin}(x)=0.89[/tex]. We are asked to find [tex]\text{cos}(x)[/tex].
[tex]\text{tan}(x)=\frac{\text{sin}(x)}{\text{cos}(x)}[/tex]
[tex]\text{cos}(x)=\frac{\text{sin}(x)}{\text{tan}(x)}[/tex]
Upon substituting our given values, we will get:
[tex]\text{cos}(x)=\frac{0.89}{1.98}[/tex]
[tex]\text{cos}(x)=0.449494949[/tex]
[tex]\text{cos}(x)\approx 0.4495[/tex]
Therefore, the value of [tex]\text{cos}(x)[/tex] is approximately 0.4495.