Respuesta :

tanx=sinx/cosx
1.98=.89/cosx
cosx=.4495

Answer:

[tex]\text{cos}(x)\approx 0.4495[/tex]

Step-by-step explanation:

We have been given that [tex]\text{tan}(x)=1.98[/tex] and [tex]\text{sin}(x)=0.89[/tex]. We are asked to find [tex]\text{cos}(x)[/tex].

[tex]\text{tan}(x)=\frac{\text{sin}(x)}{\text{cos}(x)}[/tex]

[tex]\text{cos}(x)=\frac{\text{sin}(x)}{\text{tan}(x)}[/tex]

Upon substituting our given values, we will get:

[tex]\text{cos}(x)=\frac{0.89}{1.98}[/tex]

[tex]\text{cos}(x)=0.449494949[/tex]

[tex]\text{cos}(x)\approx 0.4495[/tex]

Therefore, the value of [tex]\text{cos}(x)[/tex] is approximately 0.4495.