Respuesta :
[tex]Given \: \: expression \: \: - \\ \\ \frac{ {q}^{2} + 11q + 24 }{ {q}^{2} - 5q - 24 } \\ \\ \frac{ {q}^{2} + 8q + 3q + 24 }{ {q}^{2} - 8q + 3q- 24 } \\ \\ \frac{q(q + 8) + 3(q + 8)}{q(q - 8) + 3(q - 8)} \\ \\ \frac{(q + 3)(q + 8)}{(q + 3)(q - 8)} \\ \\ \\\: \: \: \: \: \: \: \frac{(q + 8)}{(q - 8)} \: \: \: \: \: \: \: \: \: \: \: \: Ans.\\ \\ (Where\: q \:is\: not\: equal \:to \:8)[/tex]
Answer:
Step-by-step explanation:
The given rational expression is:
[tex]\frac{q^2+11q+24}{q^2-5q-24}[/tex]
On solving the above expression, we get
=[tex]\frac{q^2+8q+3q+24}{q^2-8q+3q-24}[/tex]
=[tex]\frac{q(q+8)+3(q+8)}{q(q-8)+3(q-8)}[/tex]
=[tex]\frac{(q+3)(q+8)}{(q+3)(q-8)}[/tex]
=[tex]\frac{q+8}{q-8}[/tex]
which is the required simplified expression.