Given right triangle XYZ, what is the value of tan(Y)?
A. 1/2
B. √3/3
C. √3/2
D. 2√3/3

Answer: OPTION B
Step-by-step explanation:
You must find the value of XZ as following:
[tex]sin(30\°)=XZ/4\\XZ=4*sin(30\°)\\XZ=2[/tex]
You must calculate the value of YZ as following:
[tex]cos(30\°)=YZ/4\\YZ=4*cos(30\°)\\YZ=2\sqrt{3}[/tex]
Now, you can calculate the value of tan(Y), then you obtain:
[tex]tan(Y)=opposite/adjacent\\tan(Y)=2/2\sqrt{3}[/tex]
When you rationalized the expresion, you obtain:
[tex]\frac{2}{2\sqrt{3}}*\frac{2\sqrt{3}}{2\sqrt{3}}=\frac{4\sqrt{3}}{4*3}=\frac{\sqrt{3}}{3}[/tex]
[tex]tan(Y)=\frac{\sqrt{3}}{3}[/tex]
Answer:
Option B. √3/3
Step-by-step explanation:
In a right triangle, the angles are in the ratio,
30° , 60° and 90° then their sides are in the ratio, 1 : √3 : 2
To find the sides XZ and ZY
<Y : <X : <Z = 30° : 60° : 90° and XY = 4
Therefore ,
XZ : ZY : XY = 1 :√3 : 2 = 2 : 2√3 : 4
To find tan(Y)
tan(y) = Opposite side /Adjacent side
tan(y) = XZ/ZY = 2/2√3 = 1/√3 = √3/3
tan(y) = √3/3
Therefore the correct answer is Option B. √3/3