Solve each exponential equation by using properties of common logarithms. Do not round the expression until the final answer. When necessary, round answers to the nearest hundredth.

17x = 89

x ≈ 1.58
x ≈ 5.24
x ≈ 63

Respuesta :

The answer is x 1.45

Answer:

Option 1 - [tex]x\approx 1.58[/tex]

Step-by-step explanation:

Given : Exponential equation [tex]17^x=89[/tex]

To find : Solve exponential equation by using properties of common logarithms?

Solution :

Step 1 - Write the exponential equation,

[tex]17^x=89[/tex]

Step 2 - Take logarithm both side,

[tex]\log 17^x=\log 89[/tex]

Step 3 - Apply logarithmic property, [tex]\log a^x=x\log a[/tex]

[tex]x\log 17=\log 89[/tex]

Step 4 - Divide both side by log 17,

[tex]x=\frac{\log 89}{\log 17}[/tex]

Step 5 - Solve,

[tex]x=1.584[/tex]

[tex]x\approx 1.58[/tex]

Therefore, Option 1 is correct.