Respuesta :

2x³ + 14x² + 4x + 28
2(x³) + 2(7x²) + 2(2x) + 2(14)
2(x³ + 7x² + 2x + 14)
2(x²(x) + x²(7) + 2(x) + 2(7))
2(x²(x + 7) + 2(x + 7))
2(x² + 2)(x + 7)

The answer is C.

Answer:

The complete factor is

[tex]2x^3+14x^2+4x+28=2(x+7)(x^2+2)[/tex]

Step-by-step explanation:

Given the polynomial

[tex]2x^3+14x^2+4x+28[/tex]

we have to factor the above polynomial completely.

Polynomial: [tex]2x^3+14x^2+4x+28[/tex]

Taking 2 common from all the terms

[tex]2(x^3+7x^2+2x+14)[/tex]

[tex]2[x^2(x+7)+2(x+7)][/tex]

Taking (x+7) common

[tex]2(x+7)(x^2+2)[/tex]

Option C is correct.