Respuesta :
[tex]u(x,y,z)=x^2+yz[/tex]
[tex]\begin{cases}x(p,r,\theta)=pr\cos\theta\\y(p,r,\theta)=pr\sin\theta\\z(p,r,\theta)=p+r\end{cases}[/tex]
At the point [tex](p,r,\theta)=(2,2,0)[/tex], we have
[tex]\begin{cases}x(2,2,0)=4\\y(2,2,0)=0\\z(2,2,0)=4\end{cases}[/tex]
Denote by [tex]f_x:=\dfrac{\partial f}{\partial x}[/tex] the partial derivative of a function [tex]f[/tex] with respect to the variable [tex]x[/tex]. We have
[tex]\begin{cases}u_x=2x\\u_y=z\\u_z=y\end{cases}[/tex]
The Jacobian is
[tex]\begin{bmatrix}x_p&x_r&x_\theta\\y_p&y_r&y_\theta\\z_p&z_r&z_\theta\end{bmatrix}=\begin{bmatrix}r\cos\theta&p\cos\theta&-pr\sin\theta\\r\sin\theta&p\sin\theta&pr\cos\theta\\1&1&0\end{bmatrix}[/tex]
By the chain rule,
[tex]u_p=u_xx_p+u_yy_p+u_zz_p=2xr\cos\theta+zr\sin\theta+y[/tex]
[tex]u_p(2,2,0)=2\cdot4\cdot2\cos0+4\cdot2\sin0+0\implies\boxed{u_p(2,2,0)=16}[/tex]
[tex]u_r=u_xx_r+u_yy_r+u_zz_r=2xp\cos\theta+zp\sin\theta+y[/tex]
[tex]u_r(2,2,0)=2\cdot4\cdot2\cos0+4\cdot2\sin0+0\implies\boxed{u_r(2,2,0)=16}[/tex]
[tex]u_\theta=u_xx_\theta+u_yy_\theta+u_zz_\theta=-2xpr\sin\theta+zpr\cos\theta[/tex]
[tex]u_\theta(2,2,0)=-2\cdot4\cdot2\cdot2\sin0+4\cdot2\cdot2\cos0\implies\boxed{u_\theta(2,2,0)=16}[/tex]