Radio receivers are usually tuned by adjusting the capacitor of an LC circuit. If C = C1 for a frequency of 600 kHz, then for a frequency of 1200 kHz C must be adjusted to what value?

Respuesta :

Answer:

[tex]C_2=\frac{C_1}{4}[/tex]

Explanation:

Given:

Initial capacitance, C = C₁

Initial Frequency, F₁ = 600kHz

Final Frequency, F₂ = 1200kHz

let the adjusted capacitance be, C₂

Now

the  frequency (f) is given as:

[tex]f={\frac{1}{2\pi \sqrt{LC}}}[/tex]

where, L = inductance (same for the same material)

thus substituting the values we have

[tex]600={\frac{1}{2\pi \sqrt{LC_1}}}[/tex]     ...............(1)

and

[tex]1200={\frac{1}{2\pi \sqrt{LC_2}}}[/tex]        ..............(2)

dividing the equation 1 with 2, we get

[tex]\frac{600}{1200}=\frac{{\frac{1}{2\pi \sqrt{LC_1}}}}{{\frac{1}{2\pi \sqrt{LC_2}}}}[/tex]

or

[tex]\frac{1}{2}=\sqrt{\frac{C_2}{C_1}}[/tex]

or

[tex]\frac{C_2}{C_1}=\frac{1}{4}[/tex]

or

[tex]C_2=\frac{C_1}{4}[/tex]

hence, the new capacitance C, must be one-fourth times the initial capacitance

The capacitance for the frequency of 1200 kHz must be one-fourth times the capacitance for the frequency of 800 kHz.

What is capacitance?

Capacitance is the ability of a circuit to store energy in the form of an electrical charge.it is an energy-storing device. generally, it is defined by the ratio of electric charge stored to the potential difference.

Given:

Initial capacitance is C

Capacitance for the frequency of 1200 kHz is [tex]\rm{C=C_1}[/tex]

The capacitance for the frequency of 800 kHz is [tex]\rm{C=C_2}[/tex]

The  frequency (f) is given by

[tex]f=\frac{1}{2\pi \sqrt{LC} }[/tex]

The capacitance for the frequency of 1200 kHz finds by

[tex]f_1=\frac{1}{2\pi \sqrt{LC_1} }[/tex]

[tex]1200=\frac{1}{2\pi \sqrt{LC_1} }[/tex]        ------------------1

The capacitance for the frequency of 800 kHz

[tex]f_2=\frac{1}{2\pi \sqrt{LC_2} }[/tex]

[tex]600=\frac{1}{2\pi \sqrt{LC_2} }[/tex]         ------------------2

On dividing the equation 2 by 1

[tex]\frac{1}{2} =\sqrt{\frac{C_2}{C_1} }[/tex]

[tex]{\frac{C_2}{C_1} }=\frac{1}{4}[/tex]

[tex]C_2=\frac{C_1}{4}[/tex]

Hence the capacitance for the frequency of 1200 kHz must be one-fourth times the capacitance for the frequency of 800 kHz.

Learn more about the capacitance refer to the link

https://brainly.com/question/12356566