Respuesta :
Answer:
2144 rad/s
Explanation:
R1 = R
ω1 = 536 rad/s
R2 = R/2
ω2 = ?
Mass is M
By use of angular momentum remains constant if no external force is acting on the body.
I1 ω1 = I2 ω2
The moment of inertia of solid sphere is 12/5 MR^2
So, 2/5 x M R^2 x 536 = 2/5 x M (R/2)^2 x ω2
536 = ω2 / 4
ω2 = 2144 rad/s
Answer:
ω₂ = 2144 rad/s
Explanation:
angular speed = 536 radians/second
as, we all know the moment of inertia of solid sphere
[tex]I_{sphere}= \dfrac{2}{5}MR^2[/tex]
here in the question two radius are given
by using angular momentum conservation
[tex]I_1 \omega_1 = I_2 \omega_2[/tex]
[tex]\dfrac{2}{5}MR_1^2 \omega_1 =\dfrac{2}{5}MR_2^2 \omega_2\\R^2\times 536= \dfrac{R^2}{4}\times \omega_2[/tex]
[tex]\omega_2 = 4 \times 536[/tex]
ω₂ = 2144 rad/s