Respuesta :

Answer:

Frequency = [tex]3.5294\times 10^{14}s^{-1}[/tex]

Wavenumber = [tex]1.1765\times 10^6m^{-1}[/tex]

Energy = [tex]2.3365\times 10^{-19}J[/tex]

Energy = 1.4579 eV

Energy = [tex]2.3365\times 10^{-12}erg[/tex]

Explanation:

As we are given the wavelength = 850 nm

conversion used : [tex](1nm=10^{-9}m)[/tex]

So, wavelength is  [tex]850\times 10^{-9}m[/tex]

The relation between frequency and wavelength is shown below as:

[tex]Frequency=\frac{c}{Wavelength}[/tex]

Where, c is the speed of light having value = [tex]3\times 10^8m/s[/tex]

So, Frequency is:

[tex]Frequency=\frac{3\times 10^8m/s}{850\times 10^{-9}m}[/tex]

[tex]Frequency=3.5294\times 10^{14}s^{-1}[/tex]

Wavenumber is the reciprocal of wavelength.  

So,  

[tex]Wavenumber=\frac{1}{Wavelength}=\frac{1}{850\times 10^{-9}m}[/tex]

[tex]Wavenumber=1.1765\times 10^6m^{-1}[/tex]

Also,  

[tex]Energy=h\times frequency[/tex]

where, h is Plank's constant having value as [tex]6.62\times 10^{-34}J.s[/tex]

So,  

[tex]Energy=(6.62\times 10^{-34}J.s)\times (3.5294\times 10^{14}s^{-1})[/tex]

[tex]Energy=2.3365\times 10^{-19}J[/tex]

Also,  

[tex]1J=6.24\times 10^{18}eV[/tex]

So,  

[tex]Energy=(2.3365\times 10^{-19})\times (6.24\times 10^{18}eV)[/tex]

[tex]Energy=1.4579eV[/tex]

Also,  

[tex]1J=10^7erg[/tex]

So,  

[tex]Energy=(2.3365\times 10^{-19})\times 10^7erg[/tex]

[tex]Energy=2.3365\times 10^{-12}erg[/tex]