Answer:
sequence of five intervals
(1) 2 < [tex]2^{\sqrt{3} }[/tex] < [tex]2^{2}[/tex]
(2) [tex]2^{1.7}[/tex] < [tex]2^{\sqrt{3} }[/tex] < [tex]2^{1.8}[/tex]
(3) [tex]2^{1.73}[/tex] < [tex]2^{\sqrt{3} }[/tex] < [tex]2^{1.74}[/tex]
(4) [tex]2^{1.732}[/tex] < [tex]2^{\sqrt{3} }[/tex] < [tex]2^{1.733}[/tex]
(5) [tex]2^{1.7320}[/tex] < [tex]2^{\sqrt{3} }[/tex] < [tex]2^{1.7321}[/tex]
Step-by-step explanation:
as per question given data
√3 ≈ 1.732 050 8
to find out
sequence of five intervals
solution
as we have given that √3 value that is here
√3 ≈ 1.732 050 8 ........................1
so
when we find [tex]2^{\sqrt{3} }[/tex] ................2
put here √3 value in equation number 2
we get [tex]2^{\sqrt{3} }[/tex] that is 3.322
so
sequence of five intervals
(1) 2 < [tex]2^{\sqrt{3} }[/tex] < [tex]2^{2}[/tex]
(2) [tex]2^{1.7}[/tex] < [tex]2^{\sqrt{3} }[/tex] < [tex]2^{1.8}[/tex]
(3) [tex]2^{1.73}[/tex] < [tex]2^{\sqrt{3} }[/tex] < [tex]2^{1.74}[/tex]
(4) [tex]2^{1.732}[/tex] < [tex]2^{\sqrt{3} }[/tex] < [tex]2^{1.733}[/tex]
(5) [tex]2^{1.7320}[/tex] < [tex]2^{\sqrt{3} }[/tex] < [tex]2^{1.7321}[/tex]