Use the data given below to construct a Born-Haber cycle to determine the second ionization energy of Ca. Δ H°(kJ) Ca(s)→Ca(g) 193 Ca(g)→Ca (g) e− 590 2O(g)→O2(g) - 498 O(g) e−→O−(g) - 141 O−(g) e−→O2−(g) 878 Ca(s) 12O2(g)→CaO(s) - 635 Ca2 (g) O2−(g)→CaO(s) - 34142O(g) ---> O2(g) - 498O(g) + e- ----> O-(g) - 141O-(g) + e- ----> O2-(g) 878Ca(s) + 1/2 O2(g) ----> CaO(s) - 635

Respuesta :

Answer :  The value of second ionization energy of Ca is 1010 kJ.

Explanation :  

The formation of calcium oxide is,

[tex]Ca(s)+\frac{1}{2}O_2(g)\overset{\Delta H_f}\rightarrow CaO(s)[/tex]

[tex]\Delta H_f^o[/tex] = enthalpy of formation of calcium oxide = -635 kJ

The steps involved in the born-Haber cycle for the formation of [tex]CaO[/tex]:

(1) Conversion of solid calcium into gaseous calcium atoms.

[tex]Ca(s)\overset{\Delta H_s}\rightarrow Ca(g)[/tex]

[tex]\Delta H_s[/tex] = sublimation energy of calcium = 193 kJ

(2) Conversion of gaseous calcium atoms into gaseous calcium ions.

[tex]Ca(g)\overset{\Delta H_I_1}\rightarrow Ca^{+1}(g)[/tex]

[tex]\Delta H_I_1[/tex] = first ionization energy of calcium = 590 kJ

(3) Conversion of gaseous calcium ion into gaseous calcium ions.

[tex]Ca^{+1}(g)\overset{\Delta H_I_2}\rightarrow Ca^{+2}(g)[/tex]

[tex]\Delta H_I_2[/tex] = second ionization energy of calcium = ?

(4) Conversion of molecular gaseous oxygen into gaseous oxygen atoms.

[tex]O_2(g)\overset{\Delta H_D}\rightarrow OI(g)[/tex]

[tex]\frac{1}{2}O_2(g)\overset{\Delta H_D}\rightarrow O(g)[/tex]

[tex]\Delta H_D[/tex] = dissociation energy of oxygen = [tex]\frac{498}{2}=249kJ[/tex]

(5) Conversion of gaseous oxygen atoms into gaseous oxygen ions.

[tex]O(g)\overset{\Delta H_E_1}\rightarrow O^-(g)[/tex]

[tex]\Delta H_E_1[/tex] = first electron affinity energy of oxygen = -141 kJ

(6) Conversion of gaseous oxygen ion into gaseous oxygen ions.

[tex]O^-(g)\overset{\Delta H_E_2}\rightarrow O^{2-}(g)[/tex]

[tex]\Delta H_E_2[/tex] = second electron affinity energy of oxygen = 878 kJ

(7) Conversion of gaseous cations and gaseous anion into solid calcium oxide.

[tex]Ca^{2+}(g)+O^{2-}(g)\overset{\Delta H_L}\rightarrow CaO(s)[/tex]

[tex]\Delta H_L[/tex] = lattice energy of calcium oxide = -3414 kJ

To calculate the overall energy from the born-Haber cycle, the equation used will be:

[tex]\Delta H_f^o=\Delta H_s+\Delta H_I_1+\Delta H_I_2+\Delta H_D+\Delta H_E_1+\Delta H_E_2+\Delta H_L[/tex]

Now put all the given values in this equation, we get:

[tex]-635kJ=193kJ+590kJ+\Delta H_I_2+249kJ+(-141kJ)+878kJ+(-3414kJ)[/tex]

[tex]\Delta H_I_2=1010kJ[/tex]

Therefore, the value of second ionization energy of Ca is 1010 kJ.

The second ionization energy of Calcium is 1010 kJ.

Given here,

The enthalpy of formation of calcium oxide [tex]\rm \bold { \Delta Hf(CaO)}[/tex] =  -635 kJ

The first ionization energy of calcium  IE (1)= 590 kJ

The first electron affinity energy of oxygen EA = -141 kJ

The dissociation energy of oxygen DE = 249 kJ

The second electron affinity of oxygen EA = 878 kJ

The lattice energy of calcium oxide U = -3414 kJ

To calculate the second ionization energy of Calcium,

Born-Haber cycle, the equation

[tex]\rm \bold{ \Delta H(f) = SE+ IE(1)+ IE(2) + DE + EA(1) +EA( 2) + LE}[/tex]

Put the value,

-635 kJ =  590 kJ + EI(1) + (-141 kJ) + 249 kJ + 878 kJ + ( -3414 kJ)

Solve it for IE(2)

IE(2) = 1010 kJ

Hence, we can conclude the second ionization energy of Calcium is 1010 kJ.

To know more about Born-Haber cycle, refer to the link:

https://brainly.com/question/6545392?referrer=searchResults