The wall shear stress in a fully developed flow portion of a 12-in.-diameter pipe is 1.85 lb/ft^2.
Determine the pressure gradient ∂p/∂x, wherexis the flow direction when (a) the pipe is horizontal, (b) the pipe is vertical with the flow up, and (c) the pipe is vertical with the flowdown.

Respuesta :

Answer:

a) [tex]-7.4\frac{lb}{ft^3}[/tex]

b) [tex]-69.8\frac{lb}{ft^3}[/tex]

c) [tex]55 \frac{lb}{ft^3}[/tex]

Explanation:

1) Notation

[tex]\tau=1.85\frac{lb}{ft^2}[/tex] represent the shear stress  defined as "the external force acting on an object or surface parallel to the slope or plane in which it lies"

R represent the radial distance

L the longitude

[tex]\theta=0\degree[/tex] since at the begin we have a horizontal pipe, but for parts b and c the angle would change.

D represent the diameter for the pipe

[tex]\gamma=62.4\frac{lb}{ft^3}[/tex] is the specific weight for the water  

2) Part a

For this case we can use the shear stress and the radial distance to find the pressure difference per unit of lenght, with the following formula

[tex]\frac{2\tau}{r}=\frac{\Delta p -\gamma Lsin\theta}{L}[/tex]

[tex]\frac{2\tau}{r}=\frac{\Delta p}{L}-\gamma sin\theta[/tex]

If we convert the difference's into differentials we have this:

[tex]-\frac{dp}{dx}=\frac{2\tau}{r}+\gamma sin\theta[/tex]

We can replace [tex]r=\frac{D}{2}[/tex] and we have this:

[tex]\frac{dp}{dx}=-[\frac{4\tau}{D}+\gamma sin\theta][/tex]

Replacing the values given we have:

[tex]\frac{dp}{dx}=-[\frac{4x1.85\frac{lb}{ft^2}}{1ft}+62.4\frac{lb}{ft^3} sin0]=-7.4\frac{lb}{ft^3}[/tex]

3) Part b

When the pipe is on vertical upward position the new angle would be [tex]\theta=\pi/2[/tex], and replacing into the formula we got this:

[tex]\frac{dp}{dx}=-[\frac{4x1.85\frac{lb}{ft^2}}{1ft}+62.4\frac{lb}{ft^3} sin90]=-69.8\frac{lb}{ft^3}[/tex]

4) Part c

When the pipe is on vertical downward position the new angle would be [tex]\theta=-\pi/2[/tex], and replacing into the formula we got this:

[tex]\frac{dp}{dx}=-[\frac{4x1.85\frac{lb}{ft^2}}{1ft}+62.4\frac{lb}{ft^3} sin(-90)]=55 \frac{lb}{ft^3}[/tex]