Answer:
a) 6,455 L
b) V(t) = (18/3) * t^(1.5)
Step-by-step explanation:
Part a
Integrating the given relation from t = 0 to t= 105 mins
[tex]V = \int {9 * \sqrt{t} } \, dt\\V = {\frac{9*2}{3}*t^(1.5) = \frac{18}{3}*t^(1.5)\\\\V = \frac{18}{3}*105^(1.5)\\\\\\V = 6,455L[/tex]
Part b
[tex]V(t) = \frac{18}{3} * t^(1.5) + C\\Since V = 0 @ t = 0 ; hence, C = 0\\\\V(t) = \frac{18}{3} * t^(1.5)[/tex]