Answer:
R=100 Ohm, V=11.97 volts and I=0.12 amperes
R=10 Ohm, V=10.25 volts and I=1.20 amperes
R=2 Ohm, V=6.26 volts
Explanation:
The potential difference (voltage) of a battery with internal resistance is:
[tex]V=\xi-Ir [/tex] (1)
with [tex]\xi [/tex] the electromotive force (the voltage the batteries say to has) , I the current and r the internal resistance. By Ohm's law the current that passes through the resistor is:
[tex]I=\frac{V}{R} [/tex] (2)
using (2) on (1):
[tex]V=\xi-\frac{V*r}{R}[/tex]
solving for V:
[tex] V+\frac{V*r}{R}=\xi[/tex]
[tex]V=\frac{\xi}{1+\frac{r}{R}} [/tex] (3)
R=100 Ohm
[tex] V=\frac{12.2}{1+\frac{1.9}{100}}=11.97 V[/tex]
R=10 Ohm
[tex] V=\frac{12.2}{1+\frac{1.9}{10}}=10.25 V[/tex]
R=2 Ohm
[tex] V=\frac{12.2}{1+\frac{1.9}{2}}=6.26 V[/tex]
Because we have now the values of I on the circuit (is the same through all the components because is a series circuit)
We use back substitution on (1) to find the current:
R=100 Ohm
[tex]I=\frac{V}{R}=\frac{11.97}{100}=0.12 A [/tex]
R=10 Ohm
[tex]I=\frac{V}{R}=\frac{11.97}{10}=1.20 A [/tex]