The height of a ball thrown into the air after t seconds have elapsed is h = −16t2 + 40t + 6 feet. What is the first time, t, when the ball will reach a height of 20 feet? Round your answer to two decimal places.

Respuesta :

The first time when the ball will reach a height of 20 feet is 0.42 seconds

Solution:

Given that,

The height of a ball thrown into the air after t seconds have elapsed is:

[tex]h = -16t^2 + 40t + 6[/tex]

What is the first time, t, when the ball will reach a height of 20 feet?

Substitute h = 20

[tex]20 = -16t^2 + 40t + 6\\\\-16t^2 + 40t + 6 -20 = 0\\\\-16t^2 + 40t -14 = 0\\\\16t^2 -40t + 14 = 0\\\\8t^2 -20t + 7=0[/tex]

Solve by quadractic formula

[tex]\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}[/tex]

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]\mathrm{For\:}\quad a=8,\:b=-20,\:c=7[/tex]

[tex]t = \frac{-\left(-20\right)\pm \sqrt{\left(-20\right)^2-4\cdot \:8\cdot \:7}}{2\cdot \:8}\\\\t = \frac{20 \pm \sqrt{176}}{16}\\\\t = \frac{20 \pm 4\sqrt{11}}{16}\\\\t = \frac{ 5 \pm \sqrt{11}}{4}\\\\We\ have\ two\ solutions\\\\ t=2.07915, \:t=0.42084[/tex]

Rounding off we get,

t = 2.08 , t = 0.42

Thus the first time when the ball will reach a height of 20 feet is 0.42 seconds