Respuesta :
The fourth option.
The roots of x^3 + 3x^2 - 5x - 15 are - 3, +√5 and -√5.
To find the roots you can factor the polynomial in this way:
x^3 + 3x^2 - 5x - 15 = x^2 (x + 3) - 5(x + 3) = (x +3)(x^2 - 5)
The roots are the values of x that make the function = 0.
Then the roots are
x + 3 = 0 ==> x = 3, and
x^2 - 5 = 0 ==> x = +/- √5.
The roots of x^3 + 3x^2 - 5x - 15 are - 3, +√5 and -√5.
To find the roots you can factor the polynomial in this way:
x^3 + 3x^2 - 5x - 15 = x^2 (x + 3) - 5(x + 3) = (x +3)(x^2 - 5)
The roots are the values of x that make the function = 0.
Then the roots are
x + 3 = 0 ==> x = 3, and
x^2 - 5 = 0 ==> x = +/- √5.
Answer:
Option D is correct.
Polynomial for the given zeroes are; [tex]f(x) = x^3+3x^2-5x-15[/tex]
Step-by-step explanation:
Given the roots of the polynomial function as:
[tex]x = -\sqrt{5}[/tex] , [tex]\sqrt{5}[/tex] and -3.
A root of a polynomial function is a number that, when plugged in for the variable, makes the function equal to 0.
First find the factors, we subtract the roots
so factors are:
[tex]x -(-\sqrt{5}) = x+\sqrt{5}[/tex]
[tex](x-\sqrt{5)}[/tex] and
[tex](x-(-3)) =x+3[/tex]
Now, to find the general polynomial f(x) we multiply these factors as:
[tex]f(x) = (x+\sqrt{5})(x-\sqrt{5})(x+3)[/tex]
Using [tex](x-a)(x+a) = x^2-a^2[/tex]
we have;
[tex]f(x) = (x^2-(\sqrt{5})^2)(x+3)[/tex]
or
[tex]f(x)=(x^2-5)(x+3)[/tex]
[tex]f(x) = x^2(x+3) - 5 (x+3)[/tex]
using distributive property: [tex]a\cdot(b+c) = a\cdot b + a\cdot c[/tex]
[tex]f(x) = x^3+3x^2 - 5x - 15[/tex]
Therefore, the following polynomial is, [tex]f(x) = x^3+3x^2-5x-15[/tex]