Let f be the function given by f(x) = x3+ 5x . For what value of x in the closed interval [1,3 ] does the instantaneous rate of change of f equal the average rate of change of f on that interval?

Respuesta :

Answer:

x = 2.1

Step-by-step explanation:

Instantaneous rate of change of f = [tex]\frac{df(x)}{dx}[/tex]

[tex]= \frac{d}{dx}(x^{3}+5x)\\ =3x^{2} + 5[/tex]

Average rate of change of f in an interval [a,b] = [tex]\frac{f(b)-f(a)}{b-a}[/tex]

Average rate of change = [tex]\frac{f(3)-f(1)}{3-1} = \frac{(3^{3} + 5(3)) - (1^{3} + 5(1))}{2}[/tex]

[tex]=\frac{(27+15) - (1 + 5)}{2}=\frac{42-6}{2}\\ \\= \frac{36}{2} = 18[/tex]

At the point when instantaneous rate of change = Average rate of change,

[tex]3x^{2} + 5 = 18\\\\3x^{2} = 18-5 = 13[/tex]

Divide both sides by 3

[tex]\frac{3x^{2} }{3}=\frac{13}{3}\\ \\x^{2} = 4.3333[/tex]

Take the square root of both sides

[tex]\sqrt{x^{2} } =[/tex] ±[tex]\sqrt{4.3333}[/tex]

[tex]x =[/tex] ±2.0817

[tex]x = 2.0817 or x = -2.0817[/tex]

But since the value of x has to be between 1 and 3,

x = 2.0817 ≅ 2.1

[tex]x=2.0817[/tex]

Step-by-step explanation:

Given :

[tex]f(x )= x^3+5 \;\;\;\;\;\rm where ,\;x \epsilon [1,3][/tex]

Calculation :

Instantaneous rate of change of f

[tex]=\dfrac {d(f(x))}{dx}[/tex]

[tex]=3x^2 + 5[/tex]

The average rate of change of f in an interval [a,b] is given by

[tex]= \dfrac{f(b)-f(a)}{b-a}[/tex]

[tex]=\dfrac{(3^3+5\times 3)-(1^3+5\times 1)}{3-1}= 18[/tex]

A point when, instantaneous rate of change = average rate of change

[tex]3x^2+5=18[/tex]

[tex]x^2 = \dfrac {13}{3}[/tex]

[tex]x = \pm 2.0817[/tex]

But , [tex]x \;\epsilon \;[1,3][/tex]

Therefore, [tex]x = 2.0817[/tex]

For more information, refer the given below

https://brainly.com/question/24898810?referrer=searchResults