Respuesta :
Answer:
[tex]grad(z(x,y))=2[e^{2xy}+2xye^{2xy}]\hat{i}+[4x^{2}e^{2xy}+2]\hat{j}[/tex]
Step-by-step explanation:
[tex]z=2xe^{2yx}+2y[/tex]
The gradient of a function is
[tex]grad(z(x,y))=D_{x}z(x,y)\hat{i}+D_{y}z(x,y)\hat{j}[/tex]
where Dx means derivative over x and the same for Dy. Hence we have
[tex]grad(z(x,y))=2[e^{2xy}+2xye^{2xy}]\hat{i}+[4x^{2}e^{2xy}+2]\hat{j}[/tex]
where we have used derivative of a product anf of an exponential function
I hope this is useful for you
regards
Answer:
[tex]\displaystyle \nabla z = 2e^\big{2yx} \Big( 2xy + 1 \Big) \hat{\i} + 2 \Big( 2x^2e^\big{2yx} + 1 \Big) \hat{\j}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Multivariable Calculus
Differentiation
- Partial Derivatives
- Derivative Notation
Partial Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t}[/tex]
Gradient: [tex]\displaystyle \nabla f(x, y, z) = \frac{\partial f}{\partial x} \hat{\i} + \frac{\partial f}{\partial y} \hat{\j} + \frac{\partial f}{\partial z} \hat{\text{k}}[/tex]
Gradient Property [Addition/Subtraction]: [tex]\displaystyle \nabla \big[ f(x) + g(x) \big] = \nabla f(x) + \nabla g(x)[/tex]
Gradient Property [Multiplied Constant]: [tex]\displaystyle \nabla \big[ \alpha f(x) \big] = \alpha \nabla f(x)[/tex]
Gradient Rule [Product Rule]: [tex]\displaystyle \nabla \big[ f(x)g(x) \big] = f(x) \nabla g(x) + \nabla f(x) g(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify.
[tex]\displaystyle z = 2xe^\big{2yx} + 2y[/tex]
Step 2: Find Gradient
- [Function] Differentiate [Gradient]: [tex]\displaystyle \nabla z = \frac{\partial}{\partial x} \bigg[ 2xe^\big{2yx} + 2y \bigg] \hat{\i} + \frac{\partial}{\partial y} \bigg[ 2xe^\big{2yx} + 2y \bigg] \hat{\j}[/tex]
- [Gradient] Rewrite [Gradient Property - Multiplied Constant]: [tex]\displaystyle \nabla z = 2 \frac{\partial}{\partial x} \bigg[ xe^\big{2yx} + y \bigg] \hat{\i} + 2 \frac{\partial}{\partial y} \bigg[ xe^\big{2yx} + y \bigg] \hat{\j}[/tex]
- [Gradient] Rewrite [Gradient Property - Addition/Subtraction]: [tex]\displaystyle \nabla z = 2 \bigg[ \frac{\partial}{\partial x} \bigg( xe^\big{2yx} \bigg) + \frac{\partial}{\partial x}(y) \bigg] \hat{\i} + 2 \bigg[ \frac{\partial}{\partial y} \bigg( xe^\big{2yx} \bigg) + \frac{\partial}{\partial y}(y) \bigg] \hat{\j}[/tex]
- [Gradient] Differentiate [Derivative Rule - Basic Power Rule]: [tex]\displaystyle \nabla z = 2 \frac{\partial}{\partial x} \bigg( xe^\big{2yx} \bigg) \hat{\i} + 2 \bigg[ \frac{\partial}{\partial y} \bigg( xe^\big{2yx} \bigg) + 1 \bigg] \hat{\j}[/tex]
- [Gradient] Rewrite [Gradient Rule - Product Rule]: [tex]\displaystyle \nabla z = 2 \bigg[ \frac{\partial}{\partial x} (x) e^\big{2yx} + x \frac{\partial}{\partial x} \bigg( e^\big{2yx} \bigg) \bigg] \hat{\i} + 2 \bigg[ \frac{\partial}{\partial y} (x) e^\big{2yx} + x \frac{\partial}{\partial y} \bigg( e^\big{2yx} \bigg) + 1 \bigg] \hat{\j}[/tex]
- [Gradient] Differentiate [Derivative Rule - Basic Power Rule]: [tex]\displaystyle \nabla z = 2 \bigg[ e^\big{2yx} + x \frac{\partial}{\partial x} \bigg( e^\big{2yx} \bigg) \bigg] \hat{\i} + 2 \bigg[ x \frac{\partial}{\partial y} \bigg( e^\big{2yx} \bigg) + 1 \bigg] \hat{\j}[/tex]
- [Gradient] Differentiate [Partial Derivative Rule - Chain Rule]: [tex]\displaystyle \nabla z = 2 \bigg[ e^\big{2yx} + xe^\big{2yx} \frac{\partial}{\partial x} (2yx) \bigg] \hat{\i} + 2 \bigg[ xe^\big{2yx} \frac{\partial}{\partial y}(2yx) + 1 \bigg] \hat{\j}[/tex]
- [Gradient] Rewrite [Gradient Property - Multiplied Constant]: [tex]\displaystyle \nabla z = 2 \bigg[ e^\big{2yx} + 2xe^\big{2yx} \frac{\partial}{\partial x} (yx) \bigg] \hat{\i} + 2 \bigg[ 2xe^\big{2yx} \frac{\partial}{\partial y}(yx) + 1 \bigg] \hat{\j}[/tex]
- [Gradient] Differentiate [Derivative Rule - Basic Power Rule]: [tex]\displaystyle \nabla z = 2 \bigg[ e^\big{2yx} + 2xye^\big{2yx} \bigg] \hat{\i} + 2 \bigg[ 2x^2e^\big{2yx} + 1 \bigg] \hat{\j}[/tex]
- [Gradient] Simplify: [tex]\displaystyle \nabla z = 2e^\big{2yx} \Big( 1 + 2xy \Big) \hat{\i} + 2 \Big( 2x^2e^\big{2yx} + 1 \Big) \hat{\j}[/tex]
- [Gradient] Rewrite: [tex]\displaystyle \nabla z = 2e^\big{2yx} \Big( 2xy + 1 \Big) \hat{\i} + 2 \Big( 2x^2e^\big{2yx} + 1 \Big) \hat{\j}[/tex]
∴ we have found the gradient of the given function z = f(x, y).
---
Learn more about gradient: https://brainly.com/question/7369278
Learn more about multivariable calculus: https://brainly.com/question/17433118
---
Topic: Multivariable Calculus
Unit: Directional Derivatives