Which expression is equivalent to (256 x Superscript 16 Baseline) Superscript one-fourth?
4x2
4x4
64x2
64x4

Respuesta :

Answer:

the answer is B

Step-by-step explanation:

The expression that is equivalent to [tex](256 x^{16})^{\frac{1}{4} }[/tex] is [tex]4x^4[/tex].

The given parameters:

  • [tex](256 x^{16})^{\frac{1}{4} }[/tex]

The given expression can be simplified by applying laws of indicial expressions as follows;

[tex](256 x^{16})^{\frac{1}{4} } = (2^8 x^{16})^{\frac{1}{4} } \\\\[/tex]

The expression can be simplified further as follows;

[tex](2^8 x^{16})^{\frac{1}{4} } = (2^8)^{\frac{1}{4} } \times (x^{16}) ^{\frac{1}{4} } = (2^2) \times (x ^4) = 4x^4\\\\[/tex]

Thus, the expression that is equivalent to [tex](256 x^{16})^{\frac{1}{4} }[/tex] is [tex]4x^4[/tex].

Learn more about laws of indices here: https://brainly.com/question/170984