A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 290 N applied to its edge causes the wheel to have an angular acceleration of 0.814 rad/s2.What is the mass of the wheel?

Respuesta :

Answer:

The mass of the wheel is 2159.045 kg

Explanation:

Given:

Radius [tex]r = 0.330[/tex]

m

Force [tex]F = 290[/tex] N

Angular acceleration [tex]\alpha = 0.814 \frac{rad}{s^{2} }[/tex]

From the formula of torque,

 Γ [tex]= I\alpha[/tex]                                        (1)

 Γ [tex]= rF[/tex]                                       (2)

[tex]rF = I \alpha[/tex]

Find momentum of inertia [tex]I[/tex] from above equation,

[tex]I = \frac{rF}{\alpha }[/tex]

[tex]I = \frac{0.330 \times 290}{0.814}[/tex]

[tex]I = 117.56[/tex] [tex]Kg. m^{2}[/tex]

Find the momentum inertia of disk,

 [tex]I = \frac{1}{2} Mr^{2}[/tex]

[tex]M = \frac{2I}{r^{2} }[/tex]

[tex]M = \frac{2 \times 117.56}{(0.330)^{2} }[/tex]

[tex]M = 2159.045[/tex] Kg

Therefore, the mass of the wheel is 2159.045 kg