Find the length of side x in simplest radical form with a rational denominator.

Answer:
x = 2[tex]\sqrt{3}[/tex]
Step-by-step explanation:
Using the tangent ratio in the right triangle with either of the 2 angles and the exact value
tan60° = [tex]\sqrt{3}[/tex]
tan60° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{6}{x}[/tex] = [tex]\sqrt{3}[/tex]
Multiply both sides by x
6 = x [tex]\sqrt{3}[/tex] ( divide both sides by [tex]\sqrt{3}[/tex] )
x = [tex]\frac{6}{\sqrt{3} }[/tex] × [tex]\frac{\sqrt{3} }{\sqrt{3} }[/tex] ← rationalising the denominator
x = [tex]\frac{6\sqrt{3} }{3}[/tex] = 2[tex]\sqrt{3}[/tex]