In the figure, ∆ABC~∆XYZ. What is the perimeter of ∆ABC? Show your work.

Answer:
49 units
Step-by-step explanation:
Given the triangles are similar then the ratios of corresponding sides are equal, that is
[tex]\frac{BC}{YZ}[/tex] = [tex]\frac{AB}{XY}[/tex], substitute values
[tex]\frac{BC}{44}[/tex] = [tex]\frac{11}{22}[/tex] ( cross- multiply )
22BC = 484 ( divide both sides by 22 )
BC = 22
------------------------------------------------
Similarly
[tex]\frac{AC}{XZ}[/tex] = [tex]\frac{AB}{XY}[/tex], substitute values
[tex]\frac{AC}{32}[/tex] = [tex]\frac{11}{22}[/tex] ( cross- multiply )
22AC = 352 ( divide both sides by 22 )
AC = 16
Thus perimeter of Δ ABC is
perimeter = AB + BC + AC = 11 + 22 + 16 = 49 units