A hollow conducting spherical shell has radii of 0.80 m and 1.20 m, The radial component of the electric field at a point that is 0.60 m from the center is closest to

Respuesta :

Complete Question

The complete question is  shown on the first uploaded image  

 

Answer:

The electric field at that point is  [tex]E = 7500 \ N/C[/tex]

Explanation:

From the question we are told that  

       The  radius of the inner circle is [tex]r_i = 0.80 \ m[/tex]

        The  radius of the outer circle is  [tex]r_o = 1.20 \ m[/tex]

       The  charge on the spherical shell [tex]q_n = -500nC = -500*10^{-9} \ C[/tex]

      The magnitude of the point charge at the center is  [tex]q_c = + 300 nC = + 300 * 10^{-9} \ C[/tex]

        The  position we are considering is  x =  0.60 m  from the center

Generally  the  electric field  at the distance x =  0.60 m  from the center  is mathematically represented as

                 [tex]E = \frac{k * q_c }{x^2}[/tex]

substituting values  

                  [tex]E = \frac{k * q_c }{x^2}[/tex]

where  k is  the coulomb constant with value [tex]k = 9*10^{9} \ kg\cdot m^3\cdot s^{-4} \cdot A^{-2}.[/tex]

     substituting values

                  [tex]E = \frac{9*10^9 * 300 *10^{-9}}{0.6^2}[/tex]

                 [tex]E = 7500 \ N/C[/tex]

Ver imagen okpalawalter8