Respuesta :
Answer:
[tex] P(A)= 0.48, P(B)= ?, P(A \cap B)= 0.21, P(A \cup B) =0.89[/tex]
And for this case we can use the total rule of probability given by:
[tex] P(A \cup B) = P(A) +P(B) -P(A\cap B)[/tex]
And if we solve for [tex] P(B) [/tex] we got:
[tex] P(B)= P(A \cup B) -P(A) +P(A \cap B)[/tex]
And replacing we got:
[tex] P(B) = 0.89 -0.48 +0.21= 0.62[/tex]
Step-by-step explanation:
We have the following probabilities given:
[tex] P(A)= 0.48, P(B)= ?, P(A \cap B)= 0.21, P(A \cup B) =0.89[/tex]
And for this case we can use the total rule of probability given by:
[tex] P(A \cup B) = P(A) +P(B) -P(A\cap B)[/tex]
And if we solve for [tex] P(B) [/tex] we got:
[tex] P(B)= P(A \cup B) -P(A) +P(A \cap B)[/tex]
And replacing we got:
[tex] P(B) = 0.89 -0.48 +0.21= 0.62[/tex]