Answer:
The answer is "[tex]\bold{i=0.05311 \ \ and \ \ x= \$ 2934.4670}[/tex]"
Step-by-step explanation:
2-year interest is:
[tex]\to (x)i + x(1 + i)i=320.......(i)[/tex]
The price of the discount is :
[tex]\to x(\frac{i}{1+i})=148......(ii)[/tex]
by mixing (ii) in (i), we get:
[tex]\to 148(1+i)+148(1+i)^2=320 \\\\\to (i+1)(i+2)= \frac{320}{148} \\\\\to i = 0.05311 \\[/tex]
[tex]\to[/tex] [tex]x= 148(\frac{i+1}{i}) \\\\[/tex]
[tex]= 148(0.054311)+ \frac{1}{(0.005311)}\\\\ =$2934.4670[/tex]
The Interest rate of annual impact:
i=0.05311
x=$ 2934.4670