The amount of interest on $x for 2 years is$320. the amount of discount on $x for one year is $148. find the annual effective interest rate i and the value of x.

Respuesta :

Answer:

The answer is "[tex]\bold{i=0.05311 \ \ and \ \ x= \$ 2934.4670}[/tex]"

Step-by-step explanation:

2-year interest is:

[tex]\to (x)i + x(1 + i)i=320.......(i)[/tex]

The price of the discount is :

[tex]\to x(\frac{i}{1+i})=148......(ii)[/tex]

by mixing (ii) in (i), we get:    

[tex]\to 148(1+i)+148(1+i)^2=320 \\\\\to (i+1)(i+2)= \frac{320}{148} \\\\\to i = 0.05311 \\[/tex]

[tex]\to[/tex] [tex]x= 148(\frac{i+1}{i}) \\\\[/tex]

[tex]= 148(0.054311)+ \frac{1}{(0.005311)}\\\\ =$2934.4670[/tex]

The Interest rate of annual impact:  

i=0.05311  

x=$ 2934.4670