Respuesta :
Answer:
a
[tex] P = 0[/tex] OR [tex] P = 135[/tex]
b
[tex]P > 0[/tex] and [tex] P < 135 [/tex]
OR
[tex]P > 0[/tex] and [tex] P < 135 [/tex]
c
Generally the carrying capacity is can be defined as the highest amount of population and environment can support for an unlimited duration or time period
d
[tex] P = 67.5 [/tex]
Step-by-step explanation:
From the question we are told that
The population model is [tex]\frac{dP}{dt} = 0.2P(1 - \frac{P}{135} )[/tex]
Generally at equilibrium
[tex]\frac{dP}{dt} = 0 [/tex]
So
[tex]0.2P = 0[/tex]
=> [tex] P = 0[/tex]
Or
[tex](1 - \frac{P}{135} ) = 0 [/tex]
=> [tex] P = 135[/tex]
Thus at equilibrium P = 0 or P = 135
Generally when the population is increasing we have that
[tex]\frac{dP}{dt} > 0 [/tex]
So
[tex]0.2P > 0[/tex]
=> [tex]P > 0[/tex]
and
[tex](1 - \frac{P}{135} ) > 0 [/tex]
[tex] P < 135 [/tex]
Now when the first value of P i.e [tex]P< 0[/tex] for [tex]\frac{dP}{dt} > 0 [/tex]
[tex] P_2 > 135 [/tex]
So when population increasing the values of P are
[tex]P > 0[/tex] and [tex] P < 135 [/tex]
OR
[tex]P > 0[/tex] and [tex] P < 135 [/tex]
So to obtain initial values of P where the population converge to the carrying capacity as [tex]t \to [\infty][/tex]
The rate equation can be represented as
[tex]\frac{dP}{dt} = \frac{1}{5}P (1 - \frac{P}{135} )[/tex]
So we will differentiate the equation again we have that
[tex]\frac{d^2 P}{dt^2} = \frac{(1 - \frac{P}{135} )}{5} - \frac{P}{675}[/tex]
Now as [tex]t \to [\infty][/tex]
[tex]\frac{d^2 P}{dt^2} \to 0 [/tex]
So
[tex] \frac{(1 - \frac{P}{135} )}{5} - \frac{P}{675} = 0[/tex]
=> [tex] \frac{(1 - \frac{P}{135} )}{5} = \frac{P}{675}[/tex]
=> [tex] P = 67.5 [/tex]