Answer:
The apparent depth d = 19.8495 cm
Explanation:
The equation for apparent depth can be expressed as:
[tex]d = \dfrac{d_1} {\mu_1}+\dfrac {d_2}{\mu_2}[/tex]
here;
[tex]d_1 = d_2 = 15 \ cm[/tex]
[tex]\mu_1[/tex] = refractive index in the first liquid = 1.75
[tex]\mu_2[/tex] = refractive index in the second liqquid= 1.33
∴
[tex]d = \dfrac{15}{1.75}+\dfrac{15}{1.33}[/tex]
[tex]d = 15( \dfrac{1}{1.75}+\dfrac{1}{1.33})[/tex]
[tex]d = 15( 0.5714 +0.7519)[/tex]
d = 15(1.3233 ) cm
d = 19.8495 cm