Respuesta :
Answer:
98% confidence interval of the true proportion of all Americans who celebrate Valentine's Day
(0.3672 , 0.7328)
Step-by-step explanation:
Explanation:-
Given Random sample size n =40
Sample proportion
[tex]p = \frac{x}{n} = \frac{22}{40} = 0.55[/tex]
98% confidence interval of the true proportion of all Americans who celebrate Valentine's Day
[tex](p-Z_{\alpha } \sqrt{\frac{pq}{n} } , p + Z_{\alpha } \sqrt{\frac{pq}{n} } )[/tex]
The Z-value Z₀.₉₈ = Z₀.₀₂ = 2.326
98% confidence interval of the true proportion of all Americans who celebrate Valentine's Day
[tex](0.55-2.326\sqrt{\frac{0.55 X0.45}{40} } , 0.55 + 2.326\sqrt{\frac{0.55 X0.45}{40} } )[/tex]
( 0.55 - 0.1828 , 0.55 + 0.1828)
(0.3672 , 0.7328)
Answer:
Step-by-step explanation:
98% confidence interval of the true proportion of all Americans who celebrate Valentine's Day
The Z-value Z₀.₉₈ = Z₀.₀₂ = 2.326
98% confidence interval of the true proportion of all Americans who celebrate Valentine's Day
( 0.55 - 0.1828 , 0.55 + 0.1828)
(0.3672 , 0.7328)