Answer:
A'(0,2), B(1, -2). C'(3,2)
Step-by-step explanation:
Given
[tex]A = (-4,-1)[/tex]
[tex]B = (-3,-5)[/tex]
[tex]C =(-1,-1)[/tex]
Solving (a); Graph and Label ABC
See attachment for graph
Solving (b): Graph and Label A'B'C'
Translation:
4 units right
3 units up
4 units right
The rule is:
[tex](x,y) \to (x + 4,y)[/tex]
So, we have:
[tex]A = (-4,-1)[/tex] ==> [tex](-4+4,-1) =(0,-1)[/tex]
[tex]B = (-3,-5)[/tex] ==> [tex](-3+4,-5) =(1,-5)[/tex]
[tex]C =(-1,-1)[/tex] ==> [tex](-1+4,-1) =(3,-1)[/tex]
3 units up
The rule is:
[tex](x,y) \to (x,y+3)[/tex]
So, we have:
[tex](0,-1)[/tex] ==> [tex]A' =(0,-1+3) = (0,2)[/tex]
[tex](1,-5)[/tex] ==> [tex]B' =(1,-5+3) = (1,-2)[/tex]
[tex](3,-1)[/tex] ==> [tex]C' =(3,-1+3) = (3,2)[/tex]
The coordinates of A' B' and C' are:
A'(0,2), B(1, -2). C'(3,2)
See attachment for graph