Respuesta :

Given:

The parent function is:

[tex]f(x)=x^2[/tex]

The graphs of f(x) and g(x) are given.

The graph of g(x) passes through the point (3,3).

To find:

The function g(x).

Solution:

From the given graph, it is clear that the graph of f(x) compressed vertically to get the graph of g(x). So,

[tex]g(x)=kf(x)[/tex]

Where, k is the stretch factor.

It can be written as:

[tex]g(x)=kx^2[/tex]                 ...(i)

The graph of g(x) passes through the point (3,3). Putting [tex]g(x)=3,x=3[/tex] in (i), we get

[tex]3=k(3)^2[/tex]

[tex]3=k(9)[/tex]

[tex]\dfrac{3}{9}=k[/tex]

[tex]\dfrac{1}{3}=k[/tex]

Putting [tex]k=\dfrac{1}{3}[/tex] in (i), we get

[tex]g(x)=\dfrac{1}{3}x^2[/tex]

Therefore, the correct option is D.