Respuesta :
[tex]\large\bf{\underline{Given:}}[/tex]
- [tex]\bf{B_{1}=16 cm}[/tex]
- [tex]\bf{B_{2}=6 cm}[/tex]
- [tex]\bf{H = 12cm}[/tex]
__________________________________________
[tex]\large\bf{\underline{Using\: formula:}}[/tex]
[tex]\boxed{\bf\underline\pink{⟹\frac{h}{3} \times (b_1 + b_{2} + \sqrt{b_{1} } \times b_{2})}}[/tex]
__________________________________________
[tex]\large\bf{\underline{Therefore}}[/tex]
[tex] \bf \: ⟹v = \frac{12}{3} \times (16 + 6 + \sqrt{16 \times 6)} [/tex]
[tex] \bf \: ⟹v = 4 \times (16 + 6 + 9.7979)[/tex]
[tex] \bf \: ⟹v = 4 \times 31.7979[/tex]
[tex] \bf \: ⟹v = 127.1917[/tex]
__________________________________________
[tex]\large\bf{\underline{Hence}}[/tex]
[tex]\large\bf{⟹Volume=127.19{cm}^{2}(approx)}[/tex]
Answer: Consider the whole pyramid, before the top (with height h) was cut off to make the frustrum. Using similar triangles, the missing height is 36/5. So, the volume of the frustrum is
1/3 * 16^2 * (12 + 36/5) - 1/3 * 6^2 * 36/5 = 1552 cm^3 hope this helps - omarresendiz :)
Step-by-step explanation: