if a + b equal to pi by 4 then prove that 1 + cot a into 1 + cot B equal to 2 into cot a into cot b

Answer:
(cotA − 1) (cotB − 1) = 2
Step-by-step explanation:
A+B= π/4 = 180°/4 = 45°
A+B=45°
∴ cot(A+B)=cot45°
∴ cotBcotA−1 / (cotB+cotA) = 1
⇒cotB + cotA = cotBcotA = 1
⇒cotB + cotA − cotBcotA + 1 = 0
⇒cotBcotA − cotB − cotA − 1 = 0
⇒cotBcotA − cotB − cotA − 1 + 2 = 0+2
⇒cotBcotA − cotB − cotA + 1 = 2
⇒cotB(cotA − 1) (cotA − 1) = 2
⇒(cotA − 1) (cotB − 1) = 2
Proved